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An algorithm has been developed which enables local Taylor-series-expansion 
solutions of the Navier-Stokes and continuity equations to be generated to arbitrary 
order. Much of the necessary algebra for generating these solutions can be done on 
a computer. Various properties of the algorithm are investigated and checked by 
making comparisons with known solutions of the equations of motion. A method of 
synthesizing nonlinear viscous-flow patterns with certain required properties is 
developed and applied to the construction of a number of two- and three-dimensional 
flow-separation patterns. These patterns are asymptotically exact solutions of the 
equations of motion close to the origin of the expansion. The region where the 
truncated series solution satisfies the full equations of motion to within a specified 
accuracy can be found. 

1. Introduction 
This work grew out of a desire to study the topology and geometry of complex 

three-dimensional steady and unsteady flow patterns and eddying motions. Critical- 
point theory has, in the past, been used for describing and classifying flow pat'terns. 
A critical point in a flow field is a point where the streamline slope is indeterminate, 
i.e. (ui/uj) = 0 / 0  where i + j  and ui is the velocity. By Taylor-series expanding the 
velocity field ui about the critical point in terms of the space coordinate xj and 
substituting the expansion into the Navier-Stokes and continuity equations, certain 
relationships between the coefficients of the expansion can be found. All possible 
patterns close to a critical point can be derived and classified. Sectional streamline 
patterns form saddles, nodes or foci. Oswatitsch (1958) was the first to carry out a 
systematic analysis of critical points located a t  a no-slip boundary and derived the 
various three-dimensional separating and reattaching flows close to such points. 
Lighthill (1963) discussed further the solutions of Oswatitsch, and Perry & Fairlie 
(1974) applied phase-plane techniques to the description of critical points. Critical 
points that  occur away from no-slip boundaries (the so-called free-slip critical points) 
require different formulations and have been studied by Perry and Fairlie (1974) and 
recently, in greater detail, by Perry (1984a). 

Critical points are the salient features of a flow pattern. If their position and type 
is known, the rest of the pattern can be deduced qualitatively, since there are a 
limited number of ways that the streamlines can be joined between the points. The 
basic topology and qualitative transport properties of the pattern can be understood 
by using the critical-point concept. 
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A series expansion up to second order about a critical point (e.g. the Oswatitsch 
solution) is limited to describing the flow in the immediate vicinity of the critical 
point. Dallmann (1983) has recently shown that if the series expansion can be 
extended to higher orders, a flow field consisting of a cluster of critical points can 
be described in one formulation. One major difficulty is the large amount of labour 
required in deriving the formulations. 

Therefore the aim is to develop an algorithm that will enable local solutions of the 
Navier-Stokes and continuity equations to be generated to arbitrary order and, as 
far as possible, the computer is to be used to  carry out the necessary algebra. A 
further aim is to apply the algorithm to the study of three-dimensional separation 
patterns of the type recently observed and classified by Bippes & Turk (1983) and 
Hornung & Perry (1984) and discussed by Dallmann (1983). 

The series expansion can be applied to any point in the flow field (i.e. not 
necessarily at a critical point) and the algorithm or some modified version of it might, 
in the future, form the basis of a computational scheme. The Taylor-series expansion 
is probably not the optimum form of series to use in computational methods. 
However, in this paper the algorithm is being used as a tool for investigating the 
properties of the Navier-Stokes and continuity equations and the topological 
features of flow patterns. 

The work is based in part on that by Perry (1984b). However, many of the initial 
ideas expressed by Perry, particularly the problems with convergence and boundary 
conditions, have been revised in this paper. A preliminary report on this work was 
given by Perry, Chong & Hornung (1985). 

2. Theory 

expressed as a single tensor equation thus: 
The Navier-Stokes equations for incompressible, constant-density flow can be 

aui au. ap azu .  at+” -=--+ U - - - - 1 - ,  
Q ax* ax, ax,ax,  

where P = p / p  is the kinematic pressure, p is the pressure, p is the fluid density, 
u is the kinematic viscosity, ui is the velocity tensor and xi is the space coordinate 
tensor (Cartesian coordinates). The continuity equation is 

au . 
ax+ 
2- - 0. 

Let us expand the velocity field thus: 

Ui = Ai + A ,  X j  + A i j k  Xj xk  + Aijkl X j  x k  X i  + Aijkl, X j  %k Xi X,  + . . . . (3) 

Equation (3) will be substituted into (1)  and (2). There are certain properties of (3) 
that  should be exploited to  simplify the analysis. All coefficients in (3) are symmetric 
in all indices but the first, e.g. 8i31k1 = Ailki = Aikj l ,  etc. Equation (3) could be written 
as 

N 

where a+b+c = n in every possible combination and permutation. a ,  b and c are 
positive whole numbers or zero. R = number of possible permutations of the indices 
in (1 1 1 . .  . ,222.. . ,333..  .) where 1 is repeated ‘a, ’ times, 2 is repeated ‘ b ’ times and 
3 is repeated ‘ c ’  times. In  fact R = ( a + b + c ) ! / a ! b ! c !  
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It can be shown that the number of unknown coefficients for an Nth-order series 
expansion is 

N K+1 

N c = 3  C C J 
K-0 J-0 

The generation of relationships for the unknown coefficients as given by the 
continuity and Navier-Stokes equations is rather lengthy, and full technical details 
are given in Perry (1984b) and Perry & Chong (1986). A brief outline is as follows. 

Substituting (3) into ( 2 )  and equating coefficients of like powers for various powers 
n generates no equations for n = 0, one equation for n = 1 ,  three non-redundant 
equations for n = 2, six non-redundant equations for n = 3 and so on to higher 
powers. For example, for n = 4, the continuity equation is 

and this gives 10 non-redundant equations. It can be shown that the number E,  of 
non-redundant continuity equations generated for an Nth-order expansion is 

N n  

n-0 J-0 
E c =  C C J (7)  

If the series expansion (3) is substituted into (1) and the terms of the same order 
are grouped, Pr, the rth derivative of pressure a t  the origin of the expansion, can be 
found. For example, P3 is given by 

and this is a third-order tensor. The symbol (0) means ' a t  the origin'. In  general, 
the various Prs are given by 

P r = - (  r - l ) ! i - [  ( J - l ) ! (K- l ) !  J * K ] + v ( r + l ) ! r .  (9) 
C(J+K=r+2) 

The three terms on the right-hand side of (9) come from the time derivative, 
convective and viscous terms respectively in the Navier-Stokes equations (1 ). 

Consider first the convective term shown in square brackets. The symbol 
CC(J+K-r+2) means to sum up over all possible combinations of J and K excluding 
zero values of J and K.  The symbols J and K denote Jth-order and Kth-order tensors. 
The combination J. K denotes the sum of products of J th-  and Kth-order tensors and 
the number of free indices in each product is r .  I n  each combination J .  K ,  q, the index 
defined in (l) ,  always leads the indices of one tensor and i always leads the indices 
of the other, There are always 2 qs in each combination and they never occur together 
in one tensor. Whenever there is an i in a tensor, it  must always be accompanied 
by a q in the same tensor. The free indices i ,  a, /3,6, etc. must be cycled so that they 
appear in all possible combinations in each tensor, and this must be done while 
observing the above rules. 

The rule for formulating the time derivative i is that this is an rth-order tensor 
No qs are involved. The viscous-term tensor r is an rth-order tensor with 

a leading index i and a repeated index q, i.e. r = Ai,,,18paqq and there are r free 
indices. All the above is best understood by considering (8) as an example. With 
r = 3, (9) becomes 

P3 =-2!~-0!3!1*4+1!2!2*3+4!~3. 
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Now 3 means dias and 3 in the viscous term means diapqq. In the convective 
terms 0!3!1.4 means 6AqAiapq and the symbol 1!2!2*3 means 
2(A,qAq,p+A,,AiPq+AqPAi~q).  All of this leads to (8). In  general, to obtain the rth 
derivative of pressure the order N of the series expansion must be such that N 2 r + 1 
so that appropriate viscous terms are generated in (9). 

The various orders of pressure derivatives can now be generated and appropriate 
cross-derivatives can be equated within each order. These then generate equations 
that give relationships between the various coefficients. The equating of cross- 
derivatives commences a t  the second derivatives and proceeds to the higher 
derivatives. In  this procedure, many equations that are generated are redundant. 
However, it  can be shown that the number of non-redundant equations generated 
by an Nth-order series expansion is 

where ENS is the total number of Navier-Stokes equations generated. In fact, since 
pressure has been eliminated, we are effectively constructing vorticity transport 
equations to various orders, and these turn out to be first-order ordinary differential 
equations for the series-expansion coefficients. Hence, with the aid of the algorithm 
developed, it is possible to generate all the Navier-Stokes and continuity relation- 
ships between the coefficients to any order. The authors have developed a computer 
program that generates the equations because of the enormous amount of algebra 
required. 

By a similar analysis to that used for the Navier-Stokes equation, it is found that 
N n  

n-2 J = 2  
E ,  = X X (2J-1), 

where E ,  is the number of equations generated by the Euler equation. 
The corresponding set of equations for two-dimensional flow is as follows 

N , = 2  Z J ,  

E,= X J, 

J-1 

N 

J-0 

N-1  1 

N I 

Table 1 summarizes the number of unknowns and equations generated. This gives 
an idea of the complexity of the problem and shows the need for computer-generated 
algebra. It also shows that three-dimensional flow is an order of magnitude more 
complex than two-dimensional flow. 

It can be seen from the tabulation that the number of unknowns always exceeds 
the number of equations generated. Hence, in order to obtain a solution, additional 
equations must be supplied from boundary conditions. If the flow is unsteady, these 
boundary conditions must be known functions of time which become forcing 
functions for the ordinary differential equations. Also, all coefficients must be known 
at some initial time. In  steady flow (which will be our main concern here) the problem 
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Two-dimensional 

0 2 0 0 0 
1 6 1 0 0 
2 12 3 0 1 
3 20 6 1 3 
4 30 10 3 6 
5 42 15 6 10 

N N c  Ec ENS EE 

Three-dimensional 

0 3 0 0 0 
1 12 1 0 0 
2 30 4 0 3 
3 60 10 3 1 1  
4 105 20 11  26 
5 168 35 26 50 

N N c  Ec 'NS EE 

15 212 120 91 105 15 2448 680 1001 1225 

TABLE 1 .  Number of unknowns and equations 

is to solve a set of simultaneous algebraic equations. The continuity relationships are 
simple linear algebraic equations and the Navier-Stokes relationships consist of 
linear (viscous) terms and quadratic (convective) terms. 

Once the velocity field has been determined, the pressure field P can be found from 
(9), since 

x x x  
P = Po + Pl xi + Pz =+ P3 -+ 

2! 3! 

This must truncate a t  the PN-l term. Po is the kinematic pressure a t  the origin. 

the 'algorithm '. 
The equations, rules and procedures outlined in this section will be referred to as 

3. Testing the algorithm 
Perry (19843) has tested the above algorithm by hand up to fourth order using 

a number of simple three-dimensional test cases which have known solutions, e.g. the 
solutions given by Perry (1984~)  and Hornung (1983). Following on from this work, 
the authors have developed computer programs which in principle can generate the 
necessary equations up to arbitrary order. Results of a preliminary investigation are 
presented here where a known steady two-dimensional solution is used for testing the 
algorithm up to ninth order. A simple potential flow has been chosen and is shown 
in figure 1. It should be kept in mind that potential flow is an exact solution of the 
NaviePStokes and continuity equations, and the algorithm will be applied to this 
flow without any assumption of irrotationality. The flow consists of a pair of point 
vortices convecting through stationary fluid at a velocity Urn. If the observer moves 
with the vortex pair, a steady pattern is produced. In  figure 1, various parameters 
of the flow are defined. The exact solution is series expanded about a point in the 
flow, and this is used for generating boundary conditions. These boundary conditions 
are specified as one-dimensional series expansions, i.e. along lines, for two-dimensional 
flows (and as two-dimensional series expansions, i.e. in planes, for three-dimensional 
flows). The boundary conditions are then used in the algorithm for determining the 
solution. This is compared with the original exact solution. 

It has been found that in steady-flow patterns, certain boundary-condition 
specifications lead to a very simple solution procedure. Because of the sequence in 
which certain coefficients are determined, the procedure leads to sets of Navier-Stokes 
relationships which are linear in the remaining unknown coefficients (all quadratic 



FIGURE 1. Two-dimensional potential-flow pattern used as test case. K = circulation. 

terms contain a t  least one known coefficient). All equations are then effectively linear 
in terms of the coefficients and can be solved by substitution. I n  other types of 
boundary-condition specifications, the Naviel-Stokes-generated relationships 
remain nonlinear with terms involving products of unknown coefficients. I n  some 
cases, the difficulty with the nonlinearity can be overcome by solving the problem 
as a time-dependent one where we march in time and the various coefficients are 
updated by simple substitution without any iterative procedure a t  the end of each 
timestep. 

The specification of boundary conditions as a series introduces problems of 
redundancy. Certain coefficients determined from boundary conditions must also 
satisfy the equations of motion, otherwise a contradiction occurs. I n  all computations 
carried out, coefficients determined from the equations of motion take priority if the 
same coefficients can also be determined from boundary Conditions. These redundant 
boundary-condition equations are ignored. Other methods of specifying boundary 
conditions are being explored. For instance, i t  is possible to specify boundary 
conditions on four sides of a box, and the polynomials used for these boundary con- 
ditions are generated from a series expansion about the origin which is inside the 
box. These polynomials have ‘boundary coefficients’ which are related to the 
velocity-field coefficients. If we specify only some of the lower-order boundary 
coefficients on all four sides of the box, it is possible to  generate sufficient equations 
to obtain closure, but the Navier-Stokes relationships become nonlinear in the 
remaining unknown coefficients. This is somewhat analogous to specifying boundary 
conditions at grid points around the perimeter of a finite domain, as is usually done 
in conventional numerical methods. The authors have not yet found a way of 
overcoming this difficulty of nonlinearity even when solving the problem as a 
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FIGURE 2. Comparison 1 for expansion about point 0. 

time-dependent one. It would appear that iterative methods would need to be 
employed. This is still being pursued. For the purpose of this preliminary investigation 
the boundary conditions shown in figure 1 are used where the ‘boundaries’ pass 
through the origin of the series expansion. This leads to what the authors refer to 
as a ‘canonical’ set of boundary conditions, since each of the boundary-condition 
equations generated has only one unknown. This greatly simplifies the solution 
procedure and leads effectively to a linear set of equations as mentioned earlier. 

Consider a solution about 0 in figure 1. The boundary conditions are specified by 
specifying u1 and u3 along two mutually perpendicular lines passing through 0. For 
an Nth-order series expansion, these boundary conditions are specified as an 
Nth-order series expansion about 0. The region where the full Navier-Stokes and 
continuity equations agree with the generated truncated set of equations (the region 
of accuracy) will be a finite zone surrounding the point 0. 

Various methods have been developed for determining the boundary of this region 
of accuracy. Figure 2 shows such boundaries for a 3rd- and 9th-order series expansion 
about an arbitrarily chosen point 0. The origin 0 does not necessarily need to be 
located at a critical point. Here a comparison is made with the velocity magnitude 
given by a series expansion of the exact known solution and the full exact known 
solution. This will be referred to as comparison 1. The boundaries represent a 1 % 
departure in velocity magnitude. The boundaries are insensitive to the fractional 
error chosen since, once a departure occurs, it grows very rapidly with radial distance 
from 0. It can be seen that the region of accuracy grows as the order of the expansion 
increases. 

In figure 3, the boundary conditions have been substituted into the algorithm and 
comparisons are made between two pressure distributions. This will be referred to 
as comparison 2. The first pressure field is given by the truncated series expansion 
(13). The second pressure field is obtained by substituting the velocity-field solution 
into the full Navier-Stokes equations. The boundary represents 26PltTL < 5 yo, 
where 6P is the departure in pressure given by the two methods. This method of 
comparison has the advantage that one does not need to know the exact solution a 
priori. This method is applied later to the separation-bubble computations. It should 
be noted from figure 3 that the boundary depends on Reynolds number Re. For 
Re = a U J v  = 100, the region of accuracy is close to that given in figure 2. However, 
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FIGURE 3. Comparison 2 for expansion about point 0. 

as the Reynolds number is increased, the region of accuracy shrinks. The region of 
accuracy of the computed solution is governed by two effects. One effect is caused 
by the fact that we are using a truncated series expansion; the other is caused by 
rounding errors. For comparison 2 in figure 3, at a Reynolds number of 100, 
truncation errors are the dominant source of departure, but as the Reynolds number 
increases rounding errors become equally important. This was confirmed by com- 
puting and specifying the boundary conditions in double precision. The region of 
accuracy for the higher Reynolds numbers increased appreciably. The source of 
rounding errors is in the convective terms for vorticity . These theoretically should 
sum to zero for irrotational flow but have a small error e. The terms involving the 
vorticity diffusion are equal to e/u.  Theoretically these should sum to zero for 
irrotational flow, but as u - t O  this quantity becomes unbounded. The authors 
suspected that perhaps there were programming errors in the computation of the 
convective terms. This was found not to be so by using the algorithm for solving the 
Euler equation about 0. The numerical rounding errors become negligible. Hence 
the Navier-Stokes equations are more prone to rounding errors than the Euler 
equations. How the rounding errors affect the region of accuracy is still being 
investigated. 

A more convenient comparison has been developed and is closely related t o  
comparison 2 .  From the truncated set of equations, the truncated value of lgrad PI, 
i.e. 1VPI, can be computed from (13). The truncated solution to the velocity field is 
then substituted into the full Navier-Stokes equations and the [grad PI given by this, 
i.e. (VP(, can be compared with (VPI,. A suitable criterion for the region of accuracy 
can be formulated as follows : 

This will be called comparison 3, and cursory checks gave similar results to the other 
comparisons. 
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4. Flow pattern synthesis in two dimensions 
As was stated in the Introduction, the initial aim of this work was to explore 

three-dimensional steady and unsteady flow-pattern topology. Producing separation 
patterns of various desired shapes and sizes by specifying boundary conditions is a 
very difficult and time-consuming procedure. Using the algorithm in conjunction 
with critical-point theory, the authors have discovered how to generate separation 
patterns with great control over their scale and topological properties. These 
patterns are solutions of the Navier-Stokes and continuity equations to a given 
order, and their region of accuracy is very simple to determine using the methods 
outlined in $3. Not only are these solutions useful as research tools in flow-pattern 
topology, but they might be useful for generating boundary conditions for the 
purpose of testing various computational methods. The synthesis of a simple 
two-dimensional steady fifth-order separation bubble will first be considered. 

Imagine we have a no-slip boundary along which we will specify the boundary 
vorticity = (u1/x3)x3+o to  vary according to  the equation 

7 = K ( x ~ - x ~ )  (15) 

This is illustrated in figure 4.  This gives two critical points on the wall a t  points 1 
and 2 which are saddles. In  fact, the solutions to second order are known close to 
the critical points. A local series expansion about point 1 in figure 4 in terms of g1 
and x ,  gives 

where the coordinate origin is now at  the critical point. This is the well-known 
Oswatitsch (1958) solution and has been discussed by Perry & Fairlie (1974), 
Hornung & Perry (1984) and by Perry (1984a) including the extension to three 
dimensions. The angle a t  which the separating or reattaching streamline leaves the 
surface is given by 

3 Kx, 
t an8  = - 

B ’  

where B is the local streamwise pressure derivative parameter ?jaP/ax, and 2Kx, is 
the streamwise gradient of wall vorticity, i.e. T ~ , .  A similar expansion is carried out 
about point 2. 

By specifying 7, 0, and 8, we generate equations which replace the conventional 
boundary-condition equations. Used in conjunction with the algorithm to fifth order, 
it turns out that to obtain closure we can choose the position of a third critical point, 
i.e. point 3 in figure 4. Once this point is specified, the pattern is fixed. Figure 5 shows 
some typical patterns. In  figure 5 ( a )  the critical point 3 was chosen too far from the 
surface to give a closed bubble. In  figure 5 ( b ) ,  point 3 has been shifted closer to 
the surface and a closed bubble is produced. Note that an extra saddle appears in the 
pattern. In  figure 5(c )  the Reynolds number Re = Kxg/v has been reduced from 50 
to 10 and the extra saddle has moved out of ‘view ’. The region of accuracy of these 
solutions has been computed using comparison 2 in $3. A characteristic pressure 
variation through the pattern is given by A P  = 4vBx, and from (16) an appropriate 
accuracy criterion to use is that 

(17) 

6P 6Ptan8,  
A P  - 12vKx, 

Q 5 O/O, -- 

8 F L ~ I  173 
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FIGURE 4. Parameters used in the synthesis of a two-dimensional bubble. 

0 

0 
FIGURE 5 ( n ,  b) .  For caption see facing page. 
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FIQURE 5. Fifth-order two-dimensional separation bubble. K = 0.5, 8, = 135, 8, = 45, x, = 1. (a )  
Location of centre xIc = 0, xBc = 0.5, Re = 50. (6) Location of centre x I c  = 0, xQC = 0.25, Re = 50. 
( e )  As in (b) but with Re = 10. Region of accuracy shown unshaded in (6) and (c). 

The region of accuracy using this criterion is shown in figure 5 (b ,  c ) .  As an additional 
check on the algorithm, these solutions were used to generate boundary conditions 
for u1 and u2 along the xl and x3 axes. These were then used with the algorithm, and 
the resulting solution agreed with the synthesized solution to great accuracy over the 
entire flow field. 

5. Synthesis of three-dimensional separation patterns 
Using a similar technique as for the two-dimensional synthesis, a more general 

procedure has been developed for the synthesis of three-dimensional-flow Separation. 
The surface vorticity must first be specified. By shifting the origin of the series 
expansion to various critical points located on the surface and by specifying the 
properties of these critical points, sufficient equations relating the various coefficients 
can be generated which allow the surface flow patterns to be synthesized. The flow 
pattern above the surface that would generate a particular type of surface flow 
pattern is not unique, and a variety of separation flow patterns could be generated. 
Further conditions need to be specified. These conditions are usually the angles of 
separation and reattachment and various locations and properties of critical points 
above the surface. In  general, the higher the order of the series expansion, the more 
conditions need to be specified for closure (remembering, as discussed in $ 2 ,  that all 
the Navier-Stokes and continuity relationships generated must be used). 

Examples of various separation bubbles are shown in figures 6, 7 and 8. A full 
description of the properties and numerical values of the various parameters for these 
patterns are given in Perry & Chong (1986). The surface flow patterns (limiting 
streamlines in the (z,,x2)-plane) shown in the figures are those which have been 
classified as U-separation, owl-face of the first kind, and owl-face of the second kind 
by Hornung & Perry (1984) and Perry & Hornung (1984) from surface dye-trace 
observations of flow behind missile-shaped bodies at various angles of attack (see 
Fairlie 1980; Bippes & Turk 1983). The Reynolds numbers of these observed patterns 
are high (of order lo5) but the flow patterns synthesized are a t  low Reynolds numbers 

8-2 
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FIGURE 6. Symmetrical third-order U separation. (a )  Surface flow pattern, i.e. limiting streamlines 
on the (q, s,)-plane. ( b )  Oblique view with some out-of-plane trajectories added (shown as heavy 
lines). 

(of order lo2 or less). The Reynolds number here is based on the vorticity at  the origin 
divided by viscosity, i.e. Re = y ( O ) / v .  Nevertheless, in this preliminary investigation 
we have managed to synthesize patterns that are topologically similar to those 
observed (at least at the surface). It should be pointed out that the simple U 
separation synthesized here is third order. With the no-slip boundary conditions, this 
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FIQURE 7. Symmetrical fourth-order owl-face of the second kind. (a) Surface flow pattern, i.e. 
limiting streamlines on the (zl, z,)-plane. ( b )  Oblique view with some out-of-plane trajectories 
added (shown as heavy lines). 

represents creeping flow, i.e. no inertia force is present. One must go to a t  least fourth 
order to produce inertia forces. Again, as a check on the algorithm, the synthesized 
solution was used to generate boundary conditions on three mutually perpendicular 
planes passing through the origin. Using these boundary conditions (i.e. a t  x3 = 0, 
u1 = u2 = us = 0, and the values of ui on the ( x 2 , x 3 ) -  and (zl,x3)-planes) with the 
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\- A 

FIGURE 8. Symmetrical fifth-order owl-face of the first kind. (a)  Surface flow pattern, i.e. limiting 
streamlines on the (zlr z,)-plane. ( b )  Oblique view with some out-of-plane trajectories added (shown 
as heavy lines). 

algorithm, results were obtained which agreed with the synthesized solutions 
including the limiting surface streamlines (i.e. we successfully retrieved what we 
initially specified using an entirely different solution procedure). 

I n  the synthesis of the separation bubbles given in figure 6, 7 and 8, the pattern 
was assumed to be symmetrical (ul and u3 were assumed to  be even in x2 and u2 was 
assumed to  be odd in z2). This assumption simplified the solution procedure. 
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- x1 

FIGURE 9. Unsymmetrical fifth-order owl-face of the first kind. (a)  Surface flow pattern, i.e. 
limiting streamlines on the (zl, z,)-plane. ( 6 )  Oblique view with some out-of-plane trajectories 
added (shown as heavy lines). 

Unsymmetrical solutions can be obtained by generating the canonical boundary 
conditions from the synthesized symmetrical solutions and perturbing the resulting 
boundary conditions on the (xl, 2,)-plane so that the symmetry condition is violated. 
We then use the algorithm in combination with the new unsymmetrical canonical 
boundary conditions to  solve for the three-dimensional flow pattern. This solution 
includes the limiting streamlines. This has been applied to the owl-face pattern of 
the first kind, and the resulting pattern is shown in figure 9. Note in figure 9 ( a )  how 
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FIGURE 10. Region of accuracy on the (q, 2,)-plane and on the (x2, r,)-plane. The separation 
pattern is the symmetrical owl-face of the second kind as shown in figure 7 .  

fluid shown shaded on one side of the centreplane finds its way to the focus on the 
other side of the centreplane. This pattern has undergone a major change in topology 
since the original symmetrical pattern was structurally unstable, i.e. it has a 
saddle-to-saddle connection by a separatrix streamline (see Tobak & Peake 1982 ; 
Perry & Hornung 1984 regarding structural stability). 

Regions of accuracy can also be computed for the various three-dimensional flow 
patterns using the method described in $3  using comparison 3. These are difficult to 
represent graphically. An example of the region of accuracy in the (x1,x3)- and 
(x2, x,)-planes is shown in figure 10 for the flow pattern shown in figure 7 .  

So far the authors have taken two-dimensional flow to ninth order and three- 
dimensional flow to fifth order. There is no difficulty in generating the equations to 
higher order. However, some labour is required in developing a solution strategy 
after the equations have been generated. We hope to pursue this to high orders. 
Perhaps ultimately this latter aspect of the work can be carried out using the 
computer, as was done with the former aspect. 

6. Conclusions and discussions 
An algorithm has been developed which enables the local Taylor-series-expansion 

solutions of the Navier-Stokes and continuity equations to be generated to arbitrary 
order. The various continuity and Navier-Stokes relationships between the various 
coefficients of the expansion can be generated quite easily by using a computer to 
do the necessary algebra. 

The region of accuracy of the resulting local solutions can be found. For a given 
Reynolds number, the higher the order of the expansion the greater the region of 
accuracy. For a given order of expansion, the region of accuracy shrinks with 
Reynolds number. In principle the algorithm can be used for solving steady and 
unsteady problems by the specification of external boundary conditions. The 
algorithm has some very interesting properties if boundary conditions are specified 
on the coordinate planes passing through the origin of the expansion (the canonical 
boundary conditions). If the equations are solved in the correct sequence, all 
relationships effectively become linear and the solution can be determined without 
any iterative procedure. 
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The algorithm enables flow patterns to be synthesized. These synthesized patterns 
are known to be asymptotically exact solutions to the equations of motions close to 
the origin of the expansion and are valid in a finite zone with a certain accuracy. 
This synthesis is analogous to that carried out in classical hydrodynamics where a 
pattern with various required properties is constructed by an appropriate distribution 
of sources, sinks or point vortices. Here we are carrying out the construction of 
nonlinear viscous-flow patterns by the choice of an appropriate arrangement of 
critical points, and the solution strategy is such that we are solving analytically a 
set of linear equations by successive substitution. This alone, the authors believe, 
justifies the development of the algorithm. With these analytical solutions, the 
vorticity fields can be obtained and the topological properties of such fields have yet 
to be explored 

Dallmann (1983) has initiated a study into the bifurcation processes which occur 
in flow patterns as various parameters are varied. Critical points move about, change 
their character and merge to form entirely different flow-pattern topologies. The 
algorithm developed here should form a useful basis for such studies. 

This study was a joint project between the University of Melbourne and the 
Institut fur experimentelle Stromungsmechanik, DFVLR, Gottingen. The authors 
wish to acknowledge fruitful discussions with Professor H. G. Hornung, who suggested 
that tensor analysis might be useful in this work. The financial assistance of the 
Australian Research Grant Scheme is also gratefully acknowledged. 
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